The 16S gene and its usage in pathogen identification

The 16S ribosomal RNA (rRNA) gene is a highly conserved gene found in the small subunit (SSU) of prokaryotic ribosomes. It is present in all bacteria and most archaea. The gene codes for the 16S rRNA molecule, which is a key component of the ribosomal machinery responsible for protein synthesis within the cell.

The 16S rRNA gene is particularly useful in the field of microbiology for several reasons:

Conservation and Variability: While a large portion of the 16S rRNA gene is conserved (remains relatively unchanged) across different species of bacteria, there are certain hypervariable regions within the gene that differ considerably. This combination of conserved and variable regions makes it ideal for both the identification and classification of bacteria.

Phylogenetics and Taxonomy: Sequences of the 16S rRNA gene are often used to determine evolutionary relationships among bacteria, helping scientists classify and identify organisms. By comparing the 16S rRNA gene sequences, one can deduce the evolutionary lineage and make phylogenetic trees, which show the evolutionary relationships between different bacterial species or strains.

Metagenomics and Environmental Sampling: In environmental studies, where diverse microbial communities exist, sequencing the 16S rRNA gene from a sample can provide an overview of the bacterial communities present. This technique is particularly useful for understanding the composition of microbiomes in various environments, from soil and water to the human gut.

Clinical Diagnostics: The 16S rRNA gene can also be used to identify unknown bacterial pathogens in clinical samples. If a patient has an infection caused by a rare or previously unidentified bacterium, sequencing the 16S rRNA gene can assist in its identification.

Culture-independent Analysis: Traditional microbiology often relies on culturing organisms, but many bacteria from environmental samples are not readily culturable under standard laboratory conditions. By analyzing the 16S rRNA gene directly from environmental samples, researchers can detect and study bacteria that might otherwise remain undiscovered.

To exploit these uses, various techniques like polymerase chain reaction (PCR), next-generation sequencing (NGS), and Sanger sequencing are applied to amplify and sequence the 16S rRNA gene from samples of interest.

16S is by far the target used by most of our Ripseq customers. Both in Sanger and in NGS.


Rapid Direct Sequencing Analysis of Clinical Samples using NGS or Sanger. Less than 5 minutes analysis time. No bioinformatics resources needed. Schnelle direkte Sequenzierungsanalyse klinischer Proben mit NGS oder Sanger. Weniger als 5 Minuten Analysezeit. Keine bioinformatischen Ressourcen erforderlich. Analisi rapida di sequenziamento diretto di campioni clinici utilizzando NGS o Sanger. Tempo di analisi inferiore a 5 minuti. Non sono necessarie risorse bioinformatiche. Análisis rápido de secuenciación directa de muestras clínicas mediante NGS o Sanger. Tiempo de análisis de menos de 5 minutos. No se necesitan recursos bioinformáticos. Analyse rapide par séquençage direct d'échantillons cliniques à l'aide de NGS ou de Sanger. Temps d'analyse inférieur à 5 minutes. Aucune ressource bioinformatique nécessaire. Análise rápida de sequenciamento direto de amostras clínicas usando NGS ou Sanger. Tempo de análise inferior a 5 minutos. Não são necessários recursos de bioinformática. NGS 또는 Sanger를 사용한 임상 샘플의 신속한 직접 염기서열 분석. 분석 시간은 5분 미만입니다. 생물정보학 자원이 필요하지 않습니다. 使用 NGS 或 Sanger 对临床样本进行快速直接测序分析。分析时间不到 5 分钟。不需要生物信息学资源。 NGS または Sanger を使用した臨床サンプルの高速直接シーケンス分析。分析時間は 5 分未満です。バイオインフォマティクスのリソースは必要ありません。 Быстрое прямое секвенирование клинических образцов с использованием NGS или Sanger. Время анализа менее 5 минут. Никаких биоинформатических ресурсов не требуется. Hitra analiza neposrednega zaporedja kliničnih vzorcev z uporabo NGS ali Sangerja. Čas analize manj kot 5 minut. Bioinformatični viri niso potrebni. Long-read sequencing, long-read analysis, long-read preprocessor, nanopore, Direct Sequencing analysis, identification, mixed clinical samples, patient, dual loci, HLA, HIV, HPV, bacteria, bacterium, fungi, fungal, virus, Sanger, NGS, Ion, Torrent, Illumina, 16s gene, rpob gene, ITS, ITS2 gene, 16s metagenomics, metagenomic sequencing, amplicon, metagenomic sequencing, dna sequencing, fungal sequencing, isentio, bacterial, sequencing, metagenomic, metagenomics, nucleotide sequence, pathogenomix, pathoseq, pathongs, polymicrobial, sequencing, ripseq, rpob sequencing, second opinion, shotgun, metagenomics, targeted ngs, ngs sequencing, full metagenomic sequencing, amplicon, 16sgene.com, 16smetagenomics.com, 16smetagenomicsequencing.com, 16ssequencingtools.com, ampliconmetagenomicsequencing.com, bacterialsequencing.com, bacterialsequencingtools.com, clinicalmetagenomics.com, dnasequencetools.com, dnasequencingtools.com, fullmetagenomicsequencing.com, fungalsequencing.com, fungalsequencingtools.com, itssequencingtools.com, metagenomics.bio, metagenomics.co, metagenomics.io, metagenomics.us, metagenomicsequencing.com, metagenomix.bio, metagenomix.co, metagenomix.info, metagenomix.io, metagenomix.net, metagenomix.org, metagenomix.us, microbiomeid.com, ngsmetagenomics.com, nucleotidetools.com, optogenetix.com, optogenetix.us, patho-ngs.com, patho-seq.com, PATHOGENOMIX.BIZ, PATHOGENOMIX.CO, PATHOGENOMIX.COM, pathogenomix.info, pathogenomix.io, pathogenomix.net, pathogenomix.org, PATHOGENOMIX.US, pathogenomixnet.com, pathogenomixngs.com, pathoinformatics.com, pathoinformatics.info, pathoinformatics.net, pathoinformatics.org, pathoinformaticsnet.com, pathongs.com, polymicrobialsequencing.com, ripseq.com, ripseq.io, ripseqngs.com, ripsequs.com, rpobgene.com, rpobmetagenomics.com, rpobmetagenomicsequencing.com, rpobsequencingtools.com, secondopinion.io, sequencedecoder.com, shotgunmetagenomics.com, shotgunmetagenomicsequencing.com, targetedngs.com, targetedngssequencing.com